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a b s t r a c t

The rate determining step of a number of biological processes is now known to be described by Contois
growth kinetics. In particular this growth rate has been found to describe the treatment of contaminated
wastewaters containing biodegradable organic materials from a variety of industrial processes. The effi-
cient treatment of such waste materials is of ever growing environmental concern. This contribution is
the first steady-state analysis for the treatment of industrial wastewaters, obeying Contois kinetics, in
a cascade of continuous flow bioreactors without recycle. The steady-states of the model are found and
their stability determined as a function of the residence time in each reactor of the cascade.

Asymptotic solutions are obtained for the effluent concentration leaving a cascade of n reactors for two
scenarios, in which it is assumed that the reactors in the cascade have the same residence time. In the
first scenario the limiting case of large total residence time (�∗

t ) is considered. The effluent concentration
∗ ∗ ∗n
eaction engineering
astewater

leaving the reactor (Sn) is found to be given by Sn ≈ (1/� ), when n = 1, 2, 3 and 4. It is conjectured that
this relationship holds for all n. Thus, for a fixed total residence time increasing the number of reactors
in the the cascade has a dramatic effect on the quality of the wastewater leaving the cascade. In the
second scenario, the limiting case when the total residence time is slightly larger than the washout point
is considered. In this region, a small increase in the total residence time leads to a large decrease in the
effluent concentration.

ated
These results are illustr

. Introduction

We analyse the steady-state behaviour of a reactor cascade,
ithout recycle, containing N reactors. We find the steady-state

olutions, determine their stability and obtain asymptotic solu-
ions in the limit of high residence times. The principle application
hat we have in mind is the treatment of industrial wastewaters.
lthough there exists detailed models for wastewater treatment
inetics, such as the IWA ASM model [1], we use a simple two-
ariable empirical kinetic model in which the degradation of a
iodegradable organic material is given by the Contois expression
2]. It is not the intention of this paper to suggest that the Contois
xpression is per se superior to the Monod expression. Instead our
hoice of the Contois expression is motivated by a number of exper-
mental investigations, detailed in Section 1.1, in which this kinetic
odel was found to accurately describe the processing of certain
ndustrial wastewaters.

In an earlier paper we investigated the behaviour of a single
eactor, possible including recycle, in which the degradation of the

∗ Corresponding author. Tel.: +61 2 42214400; fax: +61 2 42214845.
E-mail address: nelsonm@member.ams.org (M.I. Nelson).

385-8947/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2009.01.028
by considering the anaerobic digestion of ice-cream wastewater.
© 2009 Elsevier B.V. All rights reserved.

substrate was controlled by a Contois expression [3]. The objectives
of the current paper are to extend the process model to a cascade
of reactors without recycle. Specifically we consider cascades hav-
ing either two, three or four reactors. In Section 1.3 we provide an
overview of the mathematical analysis of cascade reactors. It should
be noted that the emphasis in this paper is the determination of
the steady-state solutions, and their stability, of a cascade without
recycle. The emphasis is not on the optimisation of a cascade. Of
course, explicit formulae for the steady-state solutions of a cascade
provides the foundations from which optimisation problems can
be investigated. Such an investigation is outside the purview of the
present contribution.

1.1. Contois growth kinetics

Many industrial processes, particularly in the food industry,
produce slurries or wastewaters containing high concentrations
of biodegradable organic materials (pollutants). For example,

the production of slurries is a feature of large pig and poultry
farms and other operations involving animal production. Before
the slurry/wastewater can be discharged the concentration of
the biodegradable organic pollutant must be reduced. One way
to achieve this is to pass the wastewater through a bioreactor

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:nelsonm@member.ams.org
dx.doi.org/10.1016/j.cej.2009.01.028
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ontaining biomass which grows through consumption of the pol-
utant. Anaerobic conditions are often favoured for the processing
f waste materials with high levels of biodegradable organic pollu-
ants as these can be removed with low investment and operational
osts [4].

The Contois growth model, Eq. (3), has been found to describe
he aerobic degradation of wastewater originating from the indus-
rial treatment of black olives [5], the aerobic biodegradation of
olid municipal organic waste [6], the anaerobic treatment of dairy
anure [7–9], the anaerobic digestion of ice-cream wastewater

10], and the anaerobic treatment of textile wastewater [11].
Within the confines of a more detailed kinetic model it has been

hown that experimental data for the processing of cattle manure,
wine waste, sewage sludge and cellulose (the last two in anaer-
bic digester’s) can be accurately simulated by assuming that the
ydrolysis kinetics are governed by Contois kinetics [12]. In fact, the
ontois growth rate has been used as a default growth-rate model

n simulations of the cleaning of wastewaters by microorganisms
13].

The Contois growth expression has also been found to model the
naerobic reduction of sulphate by a sulphate-reducing bacteria
14]. This procedure has application in the cleaning of sulphate-
ontaining industrial effluents and in the cleaning of acid mine
rainage.

In [7,8,10–12,14] the Contois growth model gave predictions that
ere in excellent agreement with experimental measurements. In

ome cases the Contois model was shown to give better agreement
ith data than other growth rate expressions [7,10,11,9,14]. What

ypes of processes can be accurately modelled by Contois kinet-
cs? Harmand and Godon [15] have proposed that the macroscopic
ehaviour of attached biomass bioreactors will be better described
y growth rate laws that are a function of the ratio of substrate
o biomass (S/X), such as the Contois expression, than growth rate
aws that depend only upon the substrate concentration, such as the

onod expression. To support this position they provide a mixture
f qualitative reasoning, literature data and numerical simula-
ions. It is proposed that in compartmental models ratio dependent
rowth laws, rather than biomass-independent growth laws, better

reflect’ the underlying environmental heterogeneity. Accordingly,
hey are better able to mimic the effect of mass-transfer limita-
ions, such as diffusion into biofilms and circumstances in which
ubstrate consumption is controlled by biomass diffusion.

Finally, we note that there is a similarity between the con-
umption of a resource by an organism (microbiology) and the
onsumption of a prey by a predator (population ecology). Jost
16] explored the use of ‘growth-rate’ functions containing organ-
sm/predator dependence in microbiology and population ecology.
he equivalent of the Contois model in population ecology is the
adio-dependent model introduced by Arditi and Ginzburg [17].

.2. Model assumptions

Wastewater from the food industries contains a complex mix-
ure of biodegradable organic materials, such as fresh and partially
ecomposed food scraps and crop-residues, that may be in suspen-
ion or dissolved. Lumping these into a single substrate species, and
he variety of microorganisms existing in the biological reactor into
single microorganism, is a convenient mathematical approxima-

ion. Formally, the use of a model containing a single substrate and
single microorganism can be justified if the overall process kinet-

cs are controlled by a process-rate limiting step. The work cited

n Section 1.1 suggests that in some cases this provides a reason-
ble approximation to an undoubtedly more complex process. In
12] the slowest step in the anaerobic digestion with suspended
r dissolved wastes is identified as the hydrolysis of solids or the
ethanogenesis.
ering Journal 149 (2009) 406–416 407

It has been suggested that the Contois specific growth rate accu-
rately describes experimental data when mass-transfer limitations
ensure that the underlying kinetic process is restricted by the avail-
able surface area. The Contois specific growth rate, Eq. (3), can be
written in the equivalent form

� = �max

(
S/X

KS + S/X

)
.

This reformulation shows that as the population density of biomass
increases the growth rate of any particular microbe decreases, due
to an an increasing obstruction to substrate uptake. In the limit of
large biomass concentration the Contois growth rate reduces to

� ≈ �maxS/(KSX),

indicating that the limiting factor is the surface area of the particu-
late substrate. Examples where the Contois model is interpreted as
a surface limiting process include [18,19,12].

In Eq. (2) the term −kdX represents a combination of first-order
processes. These include endogenous respiration, predation, and
cell death and lysis [20].

1.3. Cascade reactors

In this section we provide a brief discussion of the literature
relating to the mathematical analysis of cascade reactors. The prob-
lem of optimising the design of a cascade of bioreactors has been of
interest since the early 1960s. In earlier papers the emphasis was
on investigating the steady-state solutions of the system [21,22]. In
latter papers the emphasis has been on the optimisation of the cas-
cade design [23–29]. In the papers discussed in this section, unless
otherwise stated, the biological process was modelled using Monod
kinetics.

Herbert [21] comprehensively analysed the behaviour of two-
reactor single-stream and multiple-stream cascades assuming that
there was no death of the microorganisms. For both reactor config-
urations he found expressions for the steady-state solutions of a n
reactor cascade. Regarding single-stream cascades he stated that

“there will seldom be much practical advantage in using more
than two stages, so far as quantity production of cells is con-
cerned. On the other hand, further stages might be important in
obtaining cells of a desired quality. . .” ([21, p. 33])

Regarding multi-stream systems he stated that

“The great flexibility of multi-stream systems, combined with
their stability and the ease of operation at high flow-rates make
them superior to single-stream systems in all respects.” ([21,
page 41])

In particular, he showed that at identical residence times, a
higher product yield was achieved and a more efficient use of
substrate was seen in a multistage continuous system. Herbert’s
perspective was that of a microbiologist and his ‘objective func-
tions’ were the reactor productivity and the effective yield. In his
analysis he assumed a zero death-rate.

Powell and Lowe [22] investigated the behaviour of a cascade
of N reactors of equal volume with recycle between the final and
first reactors of the cascade. They showed that N is increased, the
behaviour of the system approached that of an ideal tubular fer-
menter with plug flow. The critical value of the residence time,
above which washout does not occur was found. It was assumed

that there was a zero death-rate.

Bischoff [23] investigated the optimisation of a single-stream
reactor cascade containing two reactors. The objective function was
to minimise the total residence time for a specified conversion. It
was assumed that there was a zero death-rate.
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Erickson and Fan [24] considered the optimisation of a N-reactor
ascade (N = 2 or 3) with recycle with a non-zero death rate. They
onsidered two objective functions. The first was to minimise the
otal reactor volume of the cascade given a desired effluent concen-
ration. The second function included two terms: one accounting for
he cost of the organic waste being discharged and one accounting
or the cost of the total reactor volume of the cascade.

Erickson et al. [25]considered the optimisation of a N-reactor
ulti-stream cascade with recycle and a zero death rate. Each reac-

or contained two stages: a mixing stage and an aeration stage. The
nfluent entered into the mixing stage, it was assumed that there
as no reaction in this stage. Thus the cascade contained 2 N reac-

ors. The objective function was, given specified concentrations of
he organisms and substrate in the recycle stream, to find the allo-
ation of the influent into the mixing tanks and the distribution of
eactor volumes so that the total volume of the reactor cascade is
inimised. This process was carried out for N = 2, 3, 4 and 5.
Grieves and Kao [26] considered a multi-stream reactor cascade

ith three reactors and a non-zero death rate. The objective func-
ion was to maximise substrate utilisation by varying the reactor
olumes and the feed input distributions.

Grady and Lim reviewed the theory of reactor cascades without
ecycle [30], and with recycle [31] from the perspective of biologi-
al wastewater treatment. Their review included the use of a single
eed stream and multiple feed streams. They investigated the opti-

isation of reactor design from two points of view: the minimum
ffluent concentration that can be obtained from a specified total
olume and the minimum reactor volume that is required to deliver
specified effluent concentration.

Braha and Hafner [32] develop a graphical technique that can be
sed to analyse data obtained from a cascade containing upto four
eactors, possible including recycle from the fourth to first reac-
or. Assuming that the death rate is zero, the technique provides
stimates of the biokinetic parameters in the Monod expression.
ore detailed, and accurate, approaches to estimating the bioki-

etic parameters, and other relevant parameters, are outlined by
rady and Lim [30,31].

Hill and Robinson [27] investigated the minimum residence time
equired to achieve a specified substrate conversion as a function
f the number of tanks in series for systems governed by Monod
inetics, substrate inhibition and product inhibition. For the major-
ty of cases considered, little reduction in the minimum residence
ime was achieved by increasing the number of tanks over three.
hree reactors in series, when optimised, gave a performance at
east comparable to, and often superior to, a plug flow reactor.
he benefit obtained by optimising the system was lower for sys-
ems subject to substrate inhibition, compared to systems subject
o Monod kinetics, and higher for systems subject to product inhibi-
ion. However, in both cases the change was “not all that great” ([27,
. 822]). Relative to the case of Monod kinetics both substrate and
roduct inhibition increases the minimum residence time required
o achieve a specified conversion. Finally, it was shown that the
se of reactors with equal size generally causes the total residence
ime required to achieve a specified conversion to increase sharply;
his is most noticeable when the cascade contains three, or more,
eactors.

Scuras et al. [28] present a general procedure to determine the
ptimum reactor configuration for a range of influent and effluent
ubstrate concentrations, half-saturation coefficients, and number
f tanks in series for both inhibitory substrates, obeying Andrews
inetics, and non-inhibitory substrates, obeying Monod kinetics.

he objective function is to minimise the quantity of biomass in
he cascade to achieve a specified effluent concentration. The jus-
ification for this choice of objective function is that reducing the
iomass concentration lowers the biomass flux into the sedimen-
ation basin which in turn reduces the required settling area. The
ering Journal 149 (2009) 406–416

benefits of staging increased when there is either a high influent
substrate concentrations and/or stringent discharge requirements.
It is concluded that three tanks in series is generally best and that
optimal tank sizing is significantly better than using tanks of equal
size. Relative to the requirements of a single reactor, staging can
reduce the biomass requirement by upto 20%. It is assumed that
the death-rate is zero.

Harmand et al. [29] investigated the optimisation of a two-stage
reactor cascade in which the design configuration may include two
feed streams (multi-stream flow) and/or a recirculation loop. The
objective function is to minimise the total volume of the cascade
given a specified conversion. The steady-state design problem was
solved for a generalised growth rate law. Special cases of this gener-
alised growth rate law include Monod kinetics, substrate inhibition
(Andrews kinetics) and product inhibition. (Only results for the
Monod case and substrate inhibition are presented.) It is assumed
that the death-rate is zero.

It was shown that the optimisation problem gives one of two
generic cases. In the first case the optimal reactor design is unique.
It does not use a recycle loop and all the feed stream enters the first
reactor. In the second case the optimal reactor design is non-unique
but consists of a class of systems having the same total volume. The
optimal solutions differ in the way in which the functionality of the
two feed streams and the recirculation loop are utilised. A simple
criteria identifies which case is appropriate to a given circumstance.
Conditions for which the optimised reactor design are locally stable
are established.

In their generalised formulation the problem considered by Hill
and Robertson [27] appears as a special case. As the specified degree
of conversion decreases the approach of Harman et al. produces opti-
mised cascades with significantly lower volumes than that of Hill
and Robinson [27].

2. Model equations and summary of results for a single
reactor

In Sections 2.1 and 2.2 we provide the dimensional and dimen-
sionless model equations for a n reactor cascade. In Section 2.3 we
state some results for a Contois process in a single reactor [3].

2.1. The dimensional model

The model equations for a n reactor cascade without recycle are

Vi
dSi

dt
= F(Si−1 − Si) − 1

˛
�(Si, Xi)ViXi, (1)

Vi
dXi

dt
= F(Xi−1 − Xi) + �(Si, Xi)ViXi − VikdXi, (2)

Specific growth rate

�(Si, Xi) = �maxSi

KsXi + Si
, (3)

Residence time

�i = Vi

F
, (4)

where i (1 ≤ i ≤ n) denotes the ith reactor in the cascade. The units
that the concentrations of the substrate species, S, and the microor-
ganisms, X, are measured in are denoted by |S| and |X| respectively.
The parameters in the model are: F, the flowrate through the reac-
tor cascade (dm3 h−1); Ks, the saturation constant (|S||X|−1); Si, the

substrate concentration within the ith reactor of the cascade (|S|);
S0, the concentration of substrate flowing into the first reactor of
the cascade (|S|); Vi, the volume of the ith reactor of the cascade
(dm3); Xi, the concentration of cell-mass within the ith reactor of
the cascade (|X|); X0, the concentration of cell-mass flowing into
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he first reactor of the cascade (|X|); kd, the death coefficient (h−1);
, time (h); ˛, the yield factor (|X||S|−1); �, the specific growth rate

odel (h−1); �max, the maximum specific growth rate (h−1); and
i, the residence time within the ith reactor of the cascade (h).

For a specific wastewater, a given biological community and a
articular set of environmental conditions the parameters Ks, kd, ˛
nd �max are fixed. The parameters that can be varied are S0, X0 and
i.

In our numerical simulations we use parameter values for the
naerobic digestion of ice-cream wastewater [10]. These are: Ks =
.4818 (g COD) (g VSS)−1, kd = 0.0131 (day−1), ˛ = 0.2116 (g VSS)
g COD)−1, �max = 0.9297 (day−1).

In Eqs. (1) and (2) it is assumed that the yield coefficient is
onstant. Extensions of this model in which the yield coefficient
s assumed to be a linear function of the substrate concentration
˛ = ˛0 + ˇS) have recently been investigated [33,34].

.2. The dimensionless model

By introducing dimensionless variables for the substrate con-
entration in the ith reactor of the cascade [S∗

i
= Si/S0], the cell mass

oncentration in the ith reactor of the cascade [X∗
i

= KsXi/S0] and
ime [t∗ = �maxt] the dimensional model, Eqs. (1) and (2), can be
ritten in the dimensionless form

dS∗
i

dt∗ = 1
�∗

i

(S∗
i−1 − S∗

i ) − 1
˛∗

X∗
i
S∗

i

X∗
i

+ S∗
i

, (5)

dX∗
i

dt∗ = 1
�∗

i

(X∗
i−1 − X∗

i ) + X∗
i
S∗

i

Xi + S∗
i

− k∗
dX∗

i , (6)

here the parameter groups are: the dimensionless substrate
oncentration in the feed [S∗

0 = 1]; the dimensionless biomass con-
entration in the feed [X∗

0 = X0Ks/S0]; the dimensionless decay rate
k∗

d
= kd/�max], the dimensionless yield coefficient [˛∗ = Ks˛] and

he dimensionless residence time [�∗
i

= Vi�max/F]. All parameters
n the model are strictly non-negative.

From now on we assume that the growth medium fed into the
ioreactor is sterile, i.e. there are no microorganisms in the influent
X0 = X∗

0 = 0), and that S∗
0 > 0.

For the anaerobic digestion of ice-cream wastewater we have
∗ = 0.1019 and k∗

d
= 0.0141.

.3. Summary of results for a single reactor

The steady-state solutions in the first reactor of the cascade, i = 1
n Eqs. (5) and (6), are given by

Washout branch
(S∗

1, X∗
1) = (1, 0).

No-washout branch,
(7)

(S∗
1, X∗

1) = ˛∗

A
(1 + k∗

d�∗
1, −1 + (1 − k∗

d)�∗
1),

A = (1 + k∗
d
�∗

1)[˛∗ − 1 + (1 − k∗
d
)�∗

1].
(8)

he no-washout branch is only physically meaningful when the
ubstrate and cell-mass concentrations are positive (S∗

1 > 0, X∗
1 >

). This happens when

1 + (1 − k∗
d)�∗

1 > 0,

hich requires that 0 < k∗
d

< 1. Henceforth we assume that this

ondition holds. The washout branch is stable when the no-
ashout branch is not physically meaningful (�∗

1 < 1/(1 − k∗
d
)). The

ashout branch is unstable when the no-washout branch is physi-
ally meaningful (�∗

1 > 1/(1 − k∗
d
)). The no-washout branch is stable

hen it is physically meaningful.
ering Journal 149 (2009) 406–416 409

A transcritical bifurcation occurs when the residence time takes
the value

�∗
1 = �∗

tr = 1
1 − k∗

d

.

At this value of the residence time the washout solution branch
intersects the no-washout solution branch [(S∗, X∗) = (1, 0)]. For
the anaerobic digestion of ice-cream wastewater we have �∗

tr =
1.01, which corresponds to �tr = 1.091 day = 26.164 h.

Consider a cascade of n reactors of equal residence time having
a total residence time of �∗

t . Then the residence time in each reactor
is �∗

t /n. It follows that when

�∗
t <

n

1 − k∗
d

washout occurs throughout the cascade. We call the value

�∗
t = n

1 − k∗
d

the washout point.

3. Results

The assumption that there is no recycling in the cascade means
that the process variables in the first reactor (S1, X1) are indepen-
dent of the process variables in all other reactors and that the
process variables in the ith reactor (Si, Xi, i /= 1) depend only upon
those in the preceding reactor (Si−1, Xi−1). This significantly simpli-
fies the study of system (5) and (6).

In Section 3.1 we show that, provided that washout does not
occur in the first reactor, the system has a unique steady-state solu-
tion and give the steady-state values of the substrate and cell-mass
concentrations in the ith reactor of the cascade. In Section 3.2 the
steady-state solution is shown to be locally stable.

In Sections 3.1 and 3.2 the residence time’s in each reactor are
arbitrary. In Sections 3.3–3.5 we assume that the residence time
in each reactor of the cascade is equal and treat the total resi-
dence time of the reactor as the primary bifurcation parameter.
In Section 3.3 we provide asymptotic solutions for the substrate
and cell-mass concentrations in the first four reactors of a cascade
at large residence times. In Section 3.4 asymptotic solutions are
presented for residence times just higher than the washout point
(�∗

t = (n/(1 − k∗
d
))).

In Section 3.5 we discuss steady-state diagrams for the effluent
concentration leaving the cascade. We investigate the performance
of a cascade of two, three and four reactors as a function of the
total residence time inside the cascade. We also consider the perfor-
mance of a cascade of two and three reactors in which the residence
times inside each reactor are optimised to minimise the effluent
concentration at a specified total residence time. The performance
of these optimised cascades is compared against that of reactor
cascades in which the residence times in each reactor are equal.

3.1. Steady-state solution

The steady-state solutions in the ith reactor of the cascade (i > 1)
are found by solving the algebraic equations

f (S∗
i
, X∗

i
) = 1

�∗
i

(S∗
i−1 − S∗

i ) − 1
˛∗

X∗
i
S∗

i

X∗
i

+ S∗
i

= 0,

g(S∗, X∗) = 1
(X∗ − X∗) + X∗

i
S∗

i − k∗X∗ = 0.

(9)
i i �∗
i

i−1 i Xi + S∗
i

d i

By considering the expression

f (S∗
i , X∗

i ) + g(S∗
i
, X∗

i
)

˛∗ = 0
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e deduce that

∗
i = Ai − BiX

∗
i ,

here the coefficients Ai and Bi are defined below. Substitution of
his expression into either of the equations in (9) shows that the
ellmass concentration X∗

i
satisfies the quadratic equation

= aiX
∗2

i + biX
∗
i + ci, (10)

nd is given by

∗
i = −bi ±

√
b2

i
− 4aici

2ai
. (11)

he coefficients in the preceding three equations are

Ai = S∗
i−1 +

X∗
i−1

˛∗ ,

Bi = 1 + k∗
d
�∗

i

˛∗ ,

ai = (Bi − 1)k∗
d
�∗

i
+ Bi(1 − �∗

i
) − 1,

bi = (1 − Bi)X∗
i−1 + Ai[(1 − k∗

d
)�∗

i
− 1],

ci = AiX
∗
i−1.

hus the solution of the steady-state Eq. (9) is given by

S∗
i , X∗

i ) = (Ai − BiX
∗
i , X∗

i ). (12)

e show in Appendix A that the solution corresponding to the
hoice of the positive square root in Eq. (11) is not physically
eaningful as either the substrate concentration (S∗

i
) or the cell

ass concentration (X∗
i
) are negative. However, the solution cor-

esponding to the choice of the negative square root is physically
eaningful; both the cell mass and substrate concentrations are

ositive. Thus, given that washout does not occur in the first reactor,
he solution in each reactor in the cascade is unique.

Note that even if the residence time in the ith reactor is smaller
han the washout condition (�∗

i
< �∗

tr) then washout does not occur
n the ith reactor because biomass from the (i − 1) th reactor flows
nto the ith reactor. And by assumption washout does not occur in
he first reactor.

.2. Stability of solutions

The Jacobian matrix for a n-reactor cascade is given by

=

⎛
⎜⎜⎝

J1 0 0 0 . . .
B2 J2 0 0 . . .
0 B3 J3 0 . . .

0
. . .

. . .
. . .

. . .

⎞
⎟⎟⎠ .

his matrix has size 2n × 2n. The blocks Bi and Ji each have size
× 2 and are defined by

Bi =

⎛
⎜⎝

1
�∗

i

0,

0
1
�∗

i

⎞
⎟⎠ ,

Ji =

⎛
⎜⎜⎜⎝

− 1
�∗

i

− 1
˛∗

X∗2

i

(X∗
i

+ S∗
i
)2

− 1
˛∗

S∗2

i

(X∗
i

+ S∗
i
)2

X∗2

i

(X∗
i

+ S∗
i
)2

−1 − k∗
d
�∗

i

�∗
i

+ S∗2

i

(X∗
i

+ S∗
i
)2

⎞
⎟⎟⎟⎠ ,

nd 0 represents the zero matrix of size 2 × 2. We establish in

ppendix B that the Jacobian matrix has two eigenvalues associated
ith each block Ji. The block J1 has two eigenvalues with negative

eal parts when (Section 2.3)

∗
1 > 1/(1 − k∗

d).
ering Journal 149 (2009) 406–416

The Jacobian matrix Ji (i > 2) can be re-written as

Ji =

⎛
⎜⎜⎜⎝

− 1
�∗

i

− 1
˛∗

X∗2

i

(X∗
i

+ S∗
i
)2

− 1
˛∗

S∗2

i

(X∗
i

+ S∗
i
)2

X∗2

i

(X∗
i

+ S∗
i
)2

− S∗
i
X∗

i

(X∗
i

+ S∗
i
)2

−
X∗

i−1

X∗
i

1
�∗

i

⎞
⎟⎟⎟⎠ ;

in obtaining this expression for Ji(2, 2) we have used the fact that
along the no-washout branch

−1 − k∗
d
�∗

i

�∗
i

= − S∗
i

X∗
i

+ S∗
i

−
X∗

i−1

X∗
i

1
�∗

i

,

which follows from Eq. (6). The eigenvalues of the 2 × 2 matrix Ji
have negative real parts when the determinant (det J) and trace of
Ji (trace J) are positive and negative respectively. We have

det J =
(

1
�∗

i

+ 1
˛∗

X∗2

i

(X∗
i

+ S∗
i
)2

)(
X∗

i
S∗

i

(X∗
i

+ S∗
i
)2

+
X∗

i−1

X∗
i

1
�∗

)

+ X∗2

i

(X∗
i

+ S∗
i
)2

1
˛∗

S∗2

i

(X∗
i

+ S∗
i
)2

,

trace J = − 1
�∗

i

− 1
˛∗

X∗2

i

(X∗
i

+ S∗
i
)2

− S∗
i
X∗

i

(X∗
i

+ S∗
i
)2

−
X∗

i−1

X∗
i

1
�∗

i

.

The trace of the Jacobian is negative and the determinant of the Jaco-
bian is positive for all physically meaningful solutions (X∗

i
> 0 and

S∗
i

> 0). Consequently, provided that washout does not occur in the
first reactor, the steady-state solution of the cascade is locally stable.

3.3. Large residence time approximations

In this section we provide large residence approximations to the
concentrations of substrate and microorganisms inside the first four
reactors of a cascade of n reactors. We denote by �∗

t the total res-
idence time in the cascade. We assume that the residence time in
each reactor of the cascade is equal, therefore �∗

i
= �∗

t /n.
At large values of the cascade residence time (�∗

t ) we have the
approximations

S∗
1 ≈ n˛∗

1 − k∗
d

1
�∗

t
+ O

(
1

�∗2
t

)
, X∗

1 ≈ ˛
n

k∗
d

1
�∗

t
+ O

(
1

�∗2
t

)
, (13)

S∗
2 ≈ c2

(
n˛∗

1 − k∗
d

)2
1

�∗2
t

+ O

(
1

�∗3
t

)
,

X∗
2 ≈ ˛d2

(
n

k∗
d

)2
1

�∗2
t

+ O

(
1

�∗3
t

)
, (14)

S∗
3 ≈ c3c2

(
n˛∗

1 − k∗
d

)3
1

�∗3
t

+ O

(
1

�∗4
t

)
,

X∗
3 ≈ ˛d3d2

(
n

k∗

)3
1
∗3

+ O

(
1
∗4

)
, (15)
S4 ≈ c4c3c2 1 − k∗
d �∗4

t

+ O
�∗5

t

,

X∗
4 ≈ ˛d4d3d2

(
n

k∗
d

)4
1

�∗4
t

+ O

(
1

�∗5
t

)
, (16)
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here the coefficients ci and di are given by

c2 = ˛∗k∗
d

+ 1 − k∗
d

˛∗k∗
d

+ 1
.

c3 = ˛∗2
k∗2

d
+ ˛∗k∗

d
(1 − k∗

d
) + 1 − k∗

d

˛∗2 k∗2

d
+ ˛∗k∗

d
+ 1

c4 = ˛∗3
k∗3

d
+ ˛∗2

k∗2

d
(1 − k∗

d
) + ˛∗k∗

d
(1 − k∗

d
) + 1 − k∗

d

(1 + ˛∗k∗
d
)(1 + ˛∗2 k∗2

d
)

d2 = ˛∗k∗
d

+ 1 − k∗
d

1 − k∗
d

d3 = ˛∗2
k∗2

d
+ ˛∗k∗

d
(1 − k∗

d
) + 1 − k∗

d

(˛∗k∗
d

+ 1)(1 − k∗
d
)

d4 = ˛∗3
k∗3

d
+ ˛∗2

k∗2

d
(1 − k∗

d
) + ˛∗k∗

d
(1 − k∗

d
) + 1 − k∗

d

(1 − k∗
d
)(˛∗2 k∗2

d
+ ˛∗k∗

d
+ 1)

.

qs. (13)–(16) show that the substrate concentration leaving a n-
eactor cascade (S∗

n) is proportional to (1/�∗n

t ) (n = 1, 2, 3, 4). It is
onjectured that this holds for any n. Should this be true then, at
ufficiently large total residence times, the addition of an extra reac-
or reduces the effluent concentration by a multiplicative factor of
1/�∗

t ). Eqs. (13)–(16) give the dimensionless substrate and cell-
ass concentrations in the first four reactors of a cascade. These

xpressions hold for any value of n. Thus, for example, substitu-
ion n = 10 in these gives the concentrations in the first through to
ourth reactor of a ten-reactor cascade. As n increases the substrate
oncentration leaving a particular reactor increases as the residence
ime in that reactor decreases.

.4. Residence time approximations near the washout point

In this section we provide approximations for the concentra-
ions of substrate and cell mass inside each reactor in a cascade of n
eactors (n = 1, 2, 3 and 4) when the total residence time is slightly
igher than the washout point (�∗

t = (n/(1 − k∗
d
))). Thus we seek an

pproximation near the value

∗
i = 1

1 − k∗
d

+ �
n

, � > 0.

or small values of the parameter � we have the approximations

∗
1 ≈ 1 − (1 − k∗

d
)

˛∗
�
n

+ O
(�

n

)2
, X∗

1 ≈ (1 − k∗
d)2 �

n
+ O
(�

n

)2
, (17)

∗
2 ≈ 1 − (1 − k∗

d
)1/2

˛∗

(�
n

)1/2
+ O
(�

n

)
,

∗
2 ≈ (1 − k∗

d)1+1/2
(�

n

)1/2
+ O
(�

n

)
, (18)

∗
3 ≈ 1 − (1 − k∗

d
)1/4

˛∗

(�
n

)1/4
+ O
(�

n

)1/2
,

∗
3 ≈ (1 − k∗

d)1+1/4
(�

n

)1/4
+ O
(�

n

)1/2
, (19)

∗
4 ≈ 1 − (1 − k∗

d
)1/8

˛∗

(�
n

)1/8
+ O
(�

n

)1/4
,

∗
3 ≈ (1 − k∗

d)1+1/8
(�)1/8

+ O
(�)1/4

. (20)

n n

onsider a cascade of n reactors operating at a residence time
lightly higher than that corresponding to washout through the
ascade (�∗

i
= 1/(1 − k∗

d
) + �/n). Expressions (17)–(20) show that

s � increases from zero the effluent concentration decreases much
Fig. 1. Effluent concentration (S∗
n) in a cascade of n reactors of equal residence time.

more sharply as the number of reactors increases. This can be seen
visually in Fig. 1. As in Section 3.3 these expressions hold for any
value of n.

3.5. Steady-state diagrams

Fig. 1 shows the effluent concentration (S∗
n) leaving a cascade

of n equal reactors as a function of the total residence time in
the cascade for the cases n = 1, 2, 3 and 4. In each case three
regions of behaviour can be identified. When the total residence is
lower than the washout point (�∗

t = (n/(1 − k∗
d
))) washout occurs in

each reactor in the cascade. The effluent concentration is therefore
the same as the pollutant concentration entering the first reac-
tor in the cascade (S∗

n = 1). In the second region, in which 0 <
�∗

t − (n/(1 − k∗
d
)) � 1, the effluent concentration decreases rapidly

with small increases in the total residence time. This region is
increasingly noticeable as the number of reactors in the cascade
increases. In the third region the substrate concentration decreases
much more slowly as the residence time increases. In this region
comparatively small decreases in effluent concentration require
considerable increases in total residence time. If the required degree
of process efficiency lays in the third region, large residence times
will be required. The figure shows that at a total residence time
�∗

t = 7 the effluent concentration leaving a single reactor can be sev-
eral orders of magnitude higher than that leaving a reactor cascade
consisting of two, three and four reactors.

The behaviour at sufficiently large residence times is governed
by the equations given in Section 3.3. These equations indicate
why the performance of the reactor only increases marginally with
increases with total residence time in this region. For instance,
for a single reactor the effluent concentration at large residence
times is inversely proportional to the residence time. For a four-
reactor cascade the effluent concentration, at large residence times,
is inversely proportional to the fourth power of the residence time.
The effluent concentration leaving a four-reactor cascade at a total
residence time �∗

t = 7 is S∗
4 = 2.21 × 10−5. To achieve the same

effluent concentration in a cascade of three, two and one reac-
tors requires total residence times of �∗ = 11.69, �∗

t = 44.51 and
�∗

t = 4678.9 respectively.
Fig. 1 shows that there is a range of residence times over which

the performance of a cascade decreases as the number of reactors

in the cascade is increased. Table 1 shows the residence time above
which a cascade with i reactors has a lower effluent concentration
than a reactor cascade with j reactors (i > j). Thus, for example, the
effluent concentration leaving a three-reactor cascade is lower than
that leaving a two-reactor cascade provided that the total residence
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Table 1
The residence time above which a reactor cascade of i reactors has a lower effluent
concentration than a reactor cascade of j reactors (i > j).

1 2 3 4

2
3
4

t
i
i

a
s
t
c
r
I
e
r
fi
t
t
v
w
i
r
i
v

e
e
a
u
t
s
r
h
e
2
i
i

i

F
r

2.20 × – –
3.07 3.25 × –
4.06 4.10 4.27 ×

ime satisfies �∗
t > 3.25. The existence of such a ‘transition point’

s a consequence of the fact that the washout point of a cascade
ncreases with the number of reactors in the cascade.

In Fig. 1 the residence time in each reactor of the cascade was
ssumed to be the same. However, for a fixed total residence time
uch a reactor configuration may not minimise the effluent concen-
ration. In Fig. 2 the effluent concentration leaving a double reactor
ascade is determined as a function of the residence time in the first
eactor; the total residence time in the cascade is fixed to �∗

t = 7.
n this figure the limits �∗

1 = 0 and �∗
1 = 7 correspond to the ‘degen-

rate’ case in which the two reactor cascade consists of a single
eactor having a residence time �∗

1 = 7. As the residence time in the
rst reactor increases from zero we see that the effluent concentra-
ion initially increases: the performance of the cascade is inferior
o that of the single reactor. The reason for this is that whilst the
alue of the residence time in the first reactor is lower than the
ashout condition for a single reactor (�∗

1 < �∗
tr = 1.01) an increase

n the residence time in the first reactor reduces the operational
esidence time of the second reactor. As soon as the residence time
n the first reactor exceeds the washout value a small increase in its
alue causes the effluent concentration to rapidly decrease.

Around the optimal design point of a double-reactor cascade the
ffluent concentration is a very flat function of the design param-
ter (�∗

1). Small variations in the value of the design parameter
round the optimal value therefore have a very small influence
pon the effluent concentration. The reactor with equal residence
imes in each reactor (�∗

1 = 3.5) is within the ‘flat’ region. Con-
equently there is very little improvement to be had, at a total
esidence �∗

t = 7, by optimising the reactor design compared to
aving two reactors of equal residence time. In Fig. 2 the efflu-
nt concentration is minimised when �∗

1 = 4.007, which gives �∗
2 =

.993 and is S∗
2 = 1.11 × 10−3. However, when there is a equal res-
dence time distribution, �∗
1 = �∗

2 = 3.5, the effluent concentration
s S∗

2 = 1.14 × 10−3.
We have determined, for a fixed total residence time, the min-

mum effluent concentration that can be obtained by optimising

ig. 2. Effluent concentration (S∗
2) as a function of the residence time in the first

eactor (�∗
1) of a two reactor cascade. Parameter value: total residence time, �∗

t = 7.
Fig. 3. Effluent concentration (S∗
n) in a cascade of n reactors of equal residence time

(�∗
i
) (curves a, b and d) and in an optimised reactor of n reactors of unequal residence

time (curves c and e).

the design of a cascade of two or three reactors. This data is
shown in Fig. 3 where it is compared against the effluent con-
centration leaving a cascade of one, two and three reactors having
equal residence times in each reactor. For example, at a fixed total
residence �∗

t = 7 the effluent concentration from a triple cascade
is minimised when �∗

1 = 3.02564, �∗
2 = 2.01023 and �∗

3 = 1.96413:
S∗

3 = 1.19 × 10−4. The effluent concentration from a triple reactor
with equal residence times is S∗

3 = 1.31 × 10−4. At small residence
times, the effluent concentration leaving an optimised reactor cas-
cade can be substantially lower than that leaving a cascade with
equal residence times. This is most noticeable in parameter regions
in which the reactor configuration with equal residence times oper-
ates in a state of washout whereas the optimised configuration
operates in a state of no-washout. Fig. 3 shows that as the total res-
idence time becomes larger the reactor configuration with equal
residence times converges towards the optimised configuration.

4. Discussion

There are a number of definitions which are used to charac-
terise the steady-state performance of a continuous flow bioreactor
processing industrial wastewaters [35]. The results stated in this
section only apply when the no-washout branch is physically mean-
ingful, that is when

�∗ > �∗
tr = 1

1 − k∗
d

> 0.

The specific utilisation (U), which is also known as the process
loading factor, the substrate removal velocity and the food to
microorganism ratio, is the rate of substrate utilisation per unit
mass of microorganisms. For the first reactor in a cascade, or for
a single reactor, it is defined by

U1 = S0 − S

X

1
�

.

The dimensionless specific utilisation (U∗) is given by

U∗
1 = 1 − S∗

X∗
1
�∗ .
The dimensionless specific utilisation in the ith reactor of a cascade
is given by

U∗
i = Si−1 − S∗

i

X∗
i

1
�∗

i

.
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Table 2
The total residence time in a cascade of n reactors to achieve an efficiency of 99%,
99.9% and 99.99%.

E∗ n = 1 n = 2 n = 3 n = 4

9
9
9

U

U

W
a
c

U

F
t

A
k
t
t
i

U

T
m
t

E

I

E

U
c

E

w
i
a
(

r
t
r
c
T

∗

9% 11.25 3.19 3.23 4.07
9.9% 104.27 7.41 4.31 4.28
9.99% 1034.48 21.37 7.55 5.38

sing system (9) this expression can be simplified to

∗
i = k∗

d

˛∗ + 1
˛∗�∗

i

(
1 −

X∗
i−1

X∗
i

)
.

e now assume that the residence times in each tank are equal
nd given by �∗

i
= �∗

t /n, where n is the total number of tanks in the
ascade. For the first reactor we have the exact expression

∗
1 = k∗

d

˛∗ + n

˛∗�∗
1

.

or the second and third tanks in the cascade we have the asymp-
otic expressions

U∗
2 =

k∗2

d

˛∗k∗
d

+ 1 − k∗
d

+ u21

�∗
t

+ O

(
1
�∗

t

)2

,

U∗
3 =

˛∗k∗3

d

˛∗2 k∗2

d
+ (1 − k∗

d
)k∗

d
˛∗ + 1 − k∗

d

+ u31

�∗
t

+ O

(
1
�∗

t

)2

,

u21 =
n(2 − k∗

d
+ 2k∗

d
˛∗)k∗

d

(1 + k∗
d
˛∗)(1 − k∗

d
+ k∗

d
˛∗)2

,

u31 =
[(1 − k∗

d
)(2k∗2

d
˛∗2 + 3˛∗k∗

d
+ 2) + 3k∗3

d
˛∗3 + 4k∗2

d
˛∗2 + 3k∗

d
˛∗ + 1]n˛∗k∗2

d

(1 + ˛∗k∗
d
)(˛∗2 k∗2

d
+ (1 − k∗

d
)˛∗k∗

d
+ 1 − k∗

d
)
2
(1 + ˛∗k∗

d
+ ˛∗2 k∗2

d
)

.

long the no-washout branch we have the requirement that 0 <
∗
d

< 1 and thus the coefficients u21 and u31 are positive. It follows
hat the specific utilization in the second and third reactor is asymp-
otically a decreasing function of the residence time. Furthermore,
n the limit of infinite residence times it follows that

1(�∗
t = ∞) > U2(�∗

t = ∞) > U3(�∗
t = ∞).

he treatment, or process, efficiency (En) of a n-reactor cascade
easures the percentage of substrate that has been removed by

he cascade. It is defined by

n = 100
S0 − Sn

S0
.

n dimensionless variables this is

∗
n = 100(1 − S∗

n)

sing Eqs. (13)–(16) we see that at large residence times the effi-
iency is given by

∗
n = 100

(
1 − �n

i=1ci

(
n˛∗

1 − k∗
d

)n
1

�∗n

t

)
,

here n = 1, 2, 3, 4. Thus as the residence time approaches infin-
ty the efficiency of the process approaches 100. However, the
pproach to 100 is faster as the number of reactors in the cascade
n) increases.

To illustrate the rapid increase in efficiency with the number of

eactors in a cascade Table 2 shows the total residence time required
o achieve efficiencies of 99%, 99.9% and 99.99%. At first sight the
esults for an efficiency of 99% seem surprising as the two reactor
ascade outperforms both the single reactor and all other cascades.
he reason for this can be gleaned from Fig. 1. The required value
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of the total residence time for a double-reactor cascade, �∗
2(E∗ =

99)satisfies

2�∗
tr < �∗

2(E∗ = 99) < 3�∗
tr ,

where �∗
tr is the value of the residence time at the transcritical bifur-

cation in a single reactor. For a cascade of n reactors the no-washout
branch is only stable if �∗ > n�∗

tr . Thus, with the efficiency set to 99%,
the two-reactor cascade will outperform any cascade with three, or
more, reactors.

The remaining results shown in Table 2 show that the total res-
idence time to achieve a given efficiency decreases as the number
of reactors in the cascade increases. However, at an efficiency of
99.9% the decrease in total residence time obtained going from a
three reactor cascade to a four reactor cascade is insignificant: the
difference in dimensionless residence time of 0.03 corresponds to
a decrease of residence time of approximately 46 min.

The rate of waste treatment in a n-reactor cascade is defined by

Wn = S0 − Sn

�t
.

In dimensionless variables this is

W∗
n = 1 − S∗

n

�∗
t

.

Using Eqs. (13)–(16) we see that at large residence times the effi-
ciency is given by

W∗
n ≈ 1

�∗
t

+ O

(
1

�∗1+n

t

)
,

i.e. it is independent of the number of reactors in the cascade.

5. Conclusion

We have investigated a bioreactor model for the interaction
between a microorganism and a rate-controlling substrate in a
reactor cascade. The specific growth rate used was the Contois
expression with the addition of a microorganism decay coefficient.
In recent years this biochemical model has found application in
describing the treatment of wastewater from a variety of indus-
trial processes. This is the f irst study to analyse the treatment of
such wastewaters in a reactor cascade. The results obtained here
were illustrated by considering the anaerobic digestion of ice-cream
wastewater, using kinetic values from [10].

Provided that washout does not occur in the first reactor of the
cascade then there is a unique steady-state solution in each reactor
of the cascade. An expression for the steady-state biomass and sub-
strate concentration in reactor i of a cascade was found, it depends
upon the corresponding values in the previous reactor. This solu-
tion was shown to be stable. The steady-state solution and stability
were determined for an arbitrary residence-time in each reactor.
For a cascade in which the residence time in each reactor are iden-
tical washout occurs throughout the cascade whenever the total
residence time, �∗

t , satisfies the inequality

�∗
t <

n

1 − k∗
d

.

Asymptotic solutions were obtained for the effluent concentra-
tion for values of the residence time slightly larger than �∗ =

(n/(1 − k

d
)). These show that in this region of parameter space small

increases in the total residence time lead to a a dramatic decrease in
the value of the effluent concentration Asymptotic solutions were
determined in the limit of high residence times. These suggest that
at sufficiently high residence times the effluent concentration in
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n-reactor cascade decay like 1/�∗n
. This result shows the strik-

ng decrease in effluent concentration obtained by adding an extra
eactor onto a cascade whilst fixing the total residence.

We have investigated minimising the effluent concentration by,
t a fixed total residence time, optimising the residence time in each
eactor. At sufficiently high total residence times the performance of
cascade with equal residence times in reactor converges towards

hat of an optimised reactor cascade. However, at lower residence
imes there can be a substantial difference in effluent concentra-
ion leaving an optimised reactor configuration and one with equal
esidence times in each reactor. This difference is more noticeable
s the number of reactors in the cascade increases.

Assuming that the residence time in each reactor was equal we
valuated three performance characterisations of continuous flow
ioreactors: specific utilisation, treatment efficiency and the rate of
aste treatment. At a fixed total residence time the use of a reactor

ascade generally improves the treatment efficiency, an improve-
ent of several orders of magnitude is possible. However, as shown

n Table 2, it is possible that increasing the number of reactors in
cascade does not decrease the total residence time required to

chieve a specified treatment efficiency.
As we were able to obtain an explicit representation of the

teady-state solution, our results can be used to quickly determined
he total residence time required in a cascade of n reactors to obtain
pre-determined treatment efficiency.
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ppendix A. Steady-state analysis

Here we show that the solution of Eq. (11) in the second reac-
or of a cascade (i = 2) is only physically meaningful (S∗

2 > 0 and
∗
2 > 0) when the negative square root sign is taken. In doing so
he only property of S∗

1 and X∗
1 that we use is that they are posi-

ive.
The steady-state equations for the concentrations inside the

hird reactor of a cascade (i = 3) are identical to those of the
econd reactor in the cascade except that the all indices have
ncreased by one. It immediately follows that the physically mean-
ngful steady-state solution in the third reactor, and hence any
eactor in the cascade, is given by the negative square root in Eq.
11).

In Section A.1 we state some preliminary observations. In Sec-
ion A.2 we establish the desired result for the non-degenerate case
ith ai = 0. In Section A.3 we show that the steady-state solution

s physically meaningful in the degenerate case that ai = 0.

.1. Preliminaries

From Eqs. (12) and (11) we have

∗
i = −bi ±

√
b2

i
− 4aici

2ai
, (21)

∗ biBi Bi

√
b2

i
− 4aici
i = Ai +
2ai

∓
2ai

. (22)

o establish the positivity of the solutions it is useful to reformu-
ate Eq. (11) as a quadratic equation in the substrate concentration
S∗

i
) rather than the cellmass concentration (X∗

i
). The steady-state
ering Journal 149 (2009) 406–416

solutions can then be written in the equivalent form

X∗
i = Ai − S∗

i

Bi
,

0 = aiS
∗2

i + qiS
∗
i + ri,

S∗
i = −qi ±

√
q2

i
− 4airi

2ai
, (23)

X∗
i = 1

Bi

[
Ai + qi

2ai
∓
√

q2
i

− 4airi

2ai

]
, (24)

The coefficients in the preceding equations are

Ai = S∗
i−1 +

X∗
n−1

˛∗ ,

Bi = 1 + k∗
d
�∗

i

˛∗ ,

ai = (Bi − 1)k∗
d
�∗

i
+ Bi(1 − �∗

i
) − 1,

qi = −2Ai(1 + k∗
d
�∗

i
) − Bi(1 − Bi)X∗

i−1 + AiBi[(1 − k∗
d
)�∗

i
− 1)

ri = AiBiX
∗
n−1 − A2

i
(1 + k∗

d
�∗

i
)X

Comparing solution (21) with solution (24) we establish that taking
the positive (negative) square root sign in Eq. (21) corresponds to
taking the negative (positive) square root sign in Eq. (23).

A.2. Positivity of the steady-state solution (ai /= 0)

Consider the coefficient ci. We have

ci = AiX
∗
i−1 = (1 +

X∗
i−1

˛∗ )X∗
i−1,

c2 = (1 + X∗
1

˛∗ )X∗
1 > 0,

as by definition ˛∗ > 0 and by assumption X∗
1 > 0. Thus when ai < 0

Eq. (21) has two real solutions: a positive solution, corresponding to
the choice of the negative sign in Eq. (21), and a negative solution,
corresponding to the choice of the positive sign in Eq. (21). We show
shortly that when ai > 0Eq. (21) has two positive solutions and that
the solution of interest corresponds to the choice of the negative
sign in Eq. (21).

Consider the coefficient ri. We have

ri = AiBiX
∗
i−1 − A2

i
(1 + k∗

d
�∗

i
) = −(S∗

i−1 +
X∗

i−1

˛∗ )(1 + k∗
d�∗

i ),

r2 = −(S∗
1 + X∗

1
˛∗ )(1 + k∗

d�∗
2) < 0,

as by definition ˛∗ > 0, k∗
d

> 0, �∗
i

> 0 and by assumption S∗
1 > 0

and X∗
1 > 0. It now follows that when ai > 0 Eq. (23) has two real

solutions: a positive solution, corresponding to the choice of the
positive sign in Eq. (23), and a negative solution, corresponding to
the choice of the negative sign in Eq. (23).

We now eliminate the possibility that either Eq. (10) or Eq. (23)
has complex solutions. Consider Eq. (10). It appears that complex
solutions may occur when ai > 0. However, when ai > 0 we know
that Eq. (23) has two real solutions for S∗

i
and through Eq. (24) there

are two real solutions for X∗
i
. Hence Eq. (10) always has two real

solutions and similarly for Eq. (23).
The question now arises as to the physical interpretation of

the two positive solutions for Eq. (10) when ai > 0. We know that

when ai > 0 Eq. (23) has two solutions, one negative and one pos-
itive. The negative (positive) solution corresponds to the negative
(positive) square root sign in Eq. (23). Therefore when ai > 0 the
physically meaningful solution corresponds to the choice of the pos-
itive square root sign in Eq. (23) which, by the comment at the end
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f Section A.1, corresponds to the choice of the negative square root
ign in Eq. (21).

We therefore conclude that, for any value of ai, ai /= 0, the choice
f the negative square root in Eq. (11) gives a physical meaningful
olution (S∗

i
> 0, X∗

i
> 0) whilst the choice of the positive square

oot in Eq. (11) gives a physical unmeaningful solution with one
egative concentration.

.3. Positivity of the steady-state solution (ai = 0)

In this section we show that the solution of Eq. (11) is positive
n the degenerate case when ai = 0.

After some algebra the coefficient ai can be written in the form

i = − 1
˛∗ (k∗

d�∗
i + 1)[(1 − k∗

d)�∗
i − (1 − ˛)∗].

he coefficient ai is therefore equal to zero when either �∗
i

=
1/k∗

d
< 0 or �∗

i
= (1 − ˛∗)/(1 − k∗

d
). From now on we assume that

< ˛∗ < 1. After some algebra the steady-state solution pair is
iven by

S∗
i

=
˛∗(1 − k∗

d
)(˛∗S∗

i−1 + X∗
i−1)S∗

i−1

(1 − ˛∗k∗
d
)X∗

i−1 + (1 − k∗
d
)˛∗2 S∗

i−1

> 0,

X∗
i

= 1 − k∗
d

(1 − ˛∗k∗
d
)X∗

i−1 + (1 − k∗
d
)˛∗2 S∗

i−1

(˛∗S∗
i−1 + X∗

i−1) > 0,

s by definition 0 < k∗
d

< 1 and by assumption 0 < ˛∗ < 1, 0 < S∗
i−1

nd 0 < X∗
i−1.

ppendix B. The eigenvalues of the Jacobian matrix J

Here we establish the result that the Jacobian matrix J has two
igenvalues associated with each block Ji. To show this we write the
acobian block Ji in the form

i =
(

Ji(1, 1) Ji(1, 2)
Ji(2, 1) Ji(2, 2)

)

he Jacobian matrix for a n-reactor cascade can be written as

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J1(1, 1) J1(2, 1) 0 0 0 0 0 . . .
J1(2, 1) J1(2, 2) 0 0 0 0 0 . . .

1
�∗

2

0 J2(1, 1) J2(2, 1) 0 0 0 . . .

0
1
�∗

2

J2(2, 1) J2(2, 2) 0 0 0 . . .

0 0
1
�∗

3

0 J3(1, 1) J3(1, 2) 0 . . .

0 0 0
1
�∗

3

J3(2, 1) J3(2, 2) 0 . . .

0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The eigenvalues of the Jacobian J are found by solving the equa-
ion

et J =

∣∣∣∣∣∣∣∣∣∣∣∣

J1(1, 1) − � J1(2, 1) 0 0 0

J1(2, 1) J1(2, 2) − � 0 0 0

1
�∗

2
0 J2(1, 1) − � J2(2, 1) 0

0
1
�∗

2
J2(2, 1) J2(2, 2) − � 0
∣∣∣∣∣∣∣∣∣∣

0 0
1
�∗

3
0 J3(1, 1) − �

0 0 0
1
�∗

3
J3(2, 1)

0
. . .

. . .
. . .

. . .
ering Journal 149 (2009) 406–416 415

0 0 . . .

0 0 . . .

0 0 . . .

0 0 . . .

J3(1, 2) 0 . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (25)

Expanding along the front row we obtain

0 = [J1(1, 1) − �]

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J1(2, 2) − � 0 0 0 0 0 . . .

0 J2(1, 1) − � J2(2, 1) 0 0 0 . . .

1
�∗

2

J2(2, 1) J2(2, 2) − � 0 0 0 . . .

0
1
�∗

3

0 J3(1, 1) − � J3(1, 2) 0 . . .

0 0
1
�∗

3

J3(2, 1) J3(2, 2) − � 0 . . .

0
. . .

. . .
. . .

. . .
. . .

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−J1(1, 2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J1(2, 1) 0 0 0 0 0 . . .

1
�∗

2

J2(1, 1) − � J2(2, 1) 0 0 0 . . .

0 J2(2, 1) J2(2, 2) − � 0 0 0 . . .

0
1
�∗

3

0 J3(1, 1) − � J3(1, 2) 0 . . .

0 0
1
�∗

3

J3(2, 1) J3(2, 2) − � 0 . . .

0
. . .

. . .
. . .

. . .
. . .

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We now expand both of the determinants in the previous equation
along the first row. Factorising the resulting expression we obtain

0 = {[J1(1, 1) − �][J1(2, 2)−�]−J1(1, 2)J1(2, 1)}

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J2(1, 1) − � J2(2, 1) 0 0 0 . . .

J2(2, 1) J2(2, 2)−� 0 0 0 . . .

1
�∗

3
0 J3(1, 1)−� J3(1, 2) 0 . . .

0
1
�∗

3
J3(2, 1) J3(2, 2) − � 0 . . .

0
. . .

. . .
. . .

. . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(26)

The equation

0 = [J1(1, 1) − �][J1(2, 2) − �] − J1(1, 2)J1(2, 1)

is the characteristic equation for the Jacobian block J1. Observe that
the structure of the determinant in Eq. (26) is identical to that in Eq.
(26): all that has changed is that the indices have increased by one.
It follows by induction that the eigenvalues of the Jacobian matrix
J are those of the constituent blocks Ji.
J3(2, 2) − � 0 . . .

. . .
. . .

. . .

∣∣∣∣∣∣
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